

> Nafion transfers water selectively

Water associates readily with sulfonic acid groups and permeates through the membrane wall.

>Nafion needs no maintenance

By the working principle of the Nafion it has the big advantage that it doesn't need any cleaning and has a long life time (if used under normal ambient air conditions over 10years) without loss of performance.

> No loss of semi volatile compounds

www.GRIMM-aerosol.com

www.GRIMM-aerosol.com

Grimm Aeros	ol Technik					GRIMM		
ogin iyonin								
Hera	Database Ev	aluation						
ap statuss	Available Data P	oints: help	Storable Pres	etting: help Database Selection (Data Type Selection) help				
olardiagram tations rend horttone Trend unrent Values valuations rear Evaluation	Achama - PML Achama - PML Achama - TML Achama - TML Achama - Man Achama - Man Achama - Man Achama - Man	s ody wed wed kidb	Look Look Look Look Look Look	dan dan dan dan dan dan dan	© Daily Mear © Hour Mear # Long Valu © Short volu	Mean Mean Values (30 Minute) t values (1 Minute)		
•Month Evaluatio •Day comparison Konfiguration User Managemen	0	utput Format	ste	Date / Time help				
	* Graph 6 Table 0 Excel 0 CSV 0 CSV Stationen	© Individual G © Individual G # Combined G © YX Graph II E Autoscale E MAXscale E Only Valid V	raph raph 1/2 Height vaph Upright alues	From Date 02-07-000 0 00 + 02 + m2 From and Date 00:00 methods (12) 02- m4 (-12) (24) 1 me		Until Date 0.0-01-2000 & 01-1-02 - Her Bet from and theil 1 month back Here here (+1) (+1) (+6) (+12) (+24) (Here		
		15		TING OF				

User Benefits

Consumables

No Consumables are needed (for example filter band) \rightarrow Reduction of costs (at other instruments this could cost up to 3.000€ within 3 years)

Energy costs are lower

The maximum power consum is 50W/h → Reduction of energy costs (example of Helsinki: 3 EDM180 – 150W, for the same number of values PM10 & PM2.5 – 6 TEOM – 3000W. Cost save in Helsinki within 10 years 26.000€)

www.GRIMM-aerosol.com

User Benefits

Simultaneous three PM values

The only available fine dust monitor, EN approved for PM-10 witch the ability to measure simultaneously PM-10 and PM-2.5 and PM-1 in μ g/m3

Count Values

Additional information of the total fine dust particle concentration will allow the understanding of the aerosol source measured. Data are in Particles / litre.

Risk Management

Fast data presentation, combined with the meteorological sensors will allow to identify the source direction and the possible risk associated. Distribution models can be feed with such information's.

www.GRIMM-aerosol.com

www.METS-Oman.com

Differences to the competitors (TEOM, SHARP, BAM,...)

- @ 4 different values simultaneously in real time
- No heating of the probe therefor no loss of SEMI Volutiles – the only instrument that includes the SVC fraction in all PM values
- Provide the source of the second s
- No consumables (no change of filters, cardriges,....)
- No problems with sand storms or desert areas
- No external pump systems No specification of the measurement range by the probe pipe head (TSP head is used)
- Easily change of measurement if regulation changes by firmware update – no need of hardware change!

www.GRIMM-aerosol.com

Image: Property of the second seco	 Official publicated certification on the 8th of April 2006 by the German UMEG First time that a light scattering instrument passed EN standards for environmental monitoring
---	---

PM2.5 – Germany – 116 days

SEQ 47/50 vs. EDM alle Daten o.V.	Equivalence field test	Number of data po	ints:	116
UNCORRECTED D	ATA	INTERCEPT CO	RRECTION	
REGRESSION OUTPUT		REGRESSION OUTPUT	and the second	
skpe b	1,28 significant	skpe b	1,28	regnificant
incertainty of b	0,02	uncertainty of b	0,02	
ntercept a	2,14 significant	intercept a	0.00	not significant
ncertainty of a	0.36	uncertainty of a	0,36	
SQUIVALENCE TEST RESULTS		EQUIVALENCE TEST RESULTS		
andom term	1,53	Grandom term	1.57	
ias at LV	9,07	Dibian at LV	6,94	
combined uncertainty	9,16	Decombined uncertainty	7,05	
rxp. rel. comb.uncertainty (%) at LV	73.25 fail	exp. rel. comb uncertainty (%) at LV	56,40	fall
M between-sampler uncertainty	1,50	RM between-sampler uncertainty	1,50	
SLOPE CORRECT	109	INTERCEPT AND SLO	PE CORRECTIO	IN .
REGRESSION OUTPUT	Carlo and an and a state of the	REGRESSION OUTPUT		200 - Contra 1997 - Contra 199
slope b	1.00 not significant	skipe b	1,00	not significant
incertainty of b	0,02	uncertainty of b	0,02	
ntercept a	1.72 significant	intercept a	0,05	not significant
incertainty of a	0.28	uncertainty of a	0,28	100000000000000000000000000000000000000
EQUIVALENCE TEST RESULTS		EQUIVALENCE TEST RESULTS		
andom term	0,90	random term	0,97	
ios at LV	1,63	bias at LV	-0,04	
combined uncertainty	1,89	combined uncertainty	0,98	
rxp. rel. comb uncertainty (%) at LV	15,12 para	exp. rel. comb uncertainty (%) at EV	7.87	pass
RM between-sampler uncertainty	1,50	RM between-sampler uncertainty	1.50	12.000.

www.GRIMM-aerosol.com

<section-header><section-header><section-header> Construction of multiple for the formation of th</section-header></section-header></section-header>	umwelt hundesamt ⁰	
Assume of the gebolises des Äquivalencitatis GRAMM Modell 10 Characterization of the GRAMM Modell 10 words enterschord dev Vegden des Bestensteins in Observació Media 10 words enterschord dev Vegden des Bestensteins in Observació Media 10 words enterschord dev Vegden des Bestensteins in Observació Media 10 words enterschord dev Vegden des Bestensteins in Observació Media 10 words enterschord dev Vegden des Bestensteins in Observació Media 10 words enterschord dev Vegden des Bestensteins in Observació Media 10 words enterschord dev Vegden des Bestensteins in Observació Media 10 words enterschord dev Vegden des Bestensteins in Observació Media 10 words enterschord dev Vegden des Bestensteins in Observació Media 10 words enterschord dev Vegden des Bestensteins in Observació Media 10 words enterschord dev Vegden des Bestensteins in Observació Media 10 words enterschord dev Vegden des Bestensteins in Observació Media 10 words enterschord dev Vegden des Bestensteins in Observació Media 10 words enterschord dev Vegden des Bestensteins in Observació Media 10 words enterschord dev Vegden des Bestensteins in Observació Media 10 words enterschord dev Vegden des Bestensteins in Observació Media 10 words enterschord dev Vegden des Bestensteins in Observació Media 10 words enterschord dev Vegden des Bestensteins in Observació Media 10 words enterschord dev Vegden des Bestensteins in Observació Media 10 words enterschord dev Vegden des Bestensteins in Observació Media 10 words enterschord dev Vegden des Bestensteins in Observació Media 10 words enterschord dev Vegden des Bestensteinschords enterschords enterschord dev Vegden des Bestenschords enterschord dev Vegden des Bestensteinschords en		
Defaultique Belanderschler Defaultigue Belandersch	Zusammenfassung der Ergebnisse des Äquivalenztests GRIMM Modell 180	
Bite Againations des GRIMM Modell 180 konnte sowehl für PMu _n is auch für PMu _n haubtge- selession werden. Die Messengen wurden am fügenden vier Messstellen durchgeführt: • Messstelle 1: Grisz Grid fülfsticher Hintergrund, Tohes Konzentrationsiveau), Darreicher 2007 Marz 2008 • Messstelle 2: Bergrege Toolen verbaute Velkregelet mit Industriserintuss Marz 2006 – Againgt 2008 • Messstelle 3: Bergrege Toolen verbaute Velkregelet mit Industriserintuss Marz 2006 – Againgt 2008 • Messstelle 4: Klapshretin Industriserintuss Marz 2006 – Againgt 2008 • Messstelle 4: Klapshretin Industriserintuss Marz 2006 – Againgt 2008 • Messstelle 4: Klapshretin Industrisering aller Kalbrierintusson Marz 2006 – Againgt 2008 • Messstelle 4: Klapshretin Industrisering aller Kalbrierintusson Marz 2006 – Angaingt 2008 • Schweiter 6 (ag 0.07) / 1, 155 • Für PMu ₂ beträgt des Kalbrierintunkson • Gammar = Gaus - 0.03 / 1, 0, 156 • Gammar = Gaus - 0.03 / 1, 0, 156 • Gammar = Gaus - 0.03 / 1, 0, 156 • Gammar = Gaus - 0.03 / 1, 0, 156 • Gammar = Gaus - 0.03 / 1, 0, 156 • Gammar = Gaus - 0.03 / 1, 0, 156 • Gammar = Gaus - 0.03 / 1, 0, 156 • Gammar = Gaus - 0.03 / 1, 0, 156 • Gammar = Gaus - 0.03 / 1, 0, 156 • Gammar = Gaus - 0.03 / 1, 0, 156 <td< td=""><td>Der kontinulerliche Staubmonitor GRIMM Modell 160 wurde entsprechend der Vorgeben des Leitlädens "Demonstratision of Equivalence of Ambient Air Monitoring Methoda" an vier Messstellan in Österreich gegen die Referenzmethoden für PMu, und PMu; getretatu und die dabei gewonnenne Messdelten nach den Regeln des Leitlädens ausgewerfelt.</td><td></td></td<>	Der kontinulerliche Staubmonitor GRIMM Modell 160 wurde entsprechend der Vorgeben des Leitlädens "Demonstratision of Equivalence of Ambient Air Monitoring Methoda" an vier Messstellan in Österreich gegen die Referenzmethoden für PMu, und PMu; getretatu und die dabei gewonnenne Messdelten nach den Regeln des Leitlädens ausgewerfelt.	
Die Messungen wurden an folgenden vier Messatellen durchgeführt: • Messatelle 1: Grie 2004 (Utilitährer Hintergrund, Tohie Konzentrationsnivesus) Deartime 2007 – Mar 2009 • Messatelle 2: Bergeng (Lobert verbaus) • Messatelle 2: Bergeng (Lobert verbaus) • Messatelle 2: Messatelle (Hinterpress) • Messatelle 2: Messatelle (Hinterpress) • Messatelle 4: Kapadint (Latificarer Hintergrand, niedziges Konzentrationnivesus) Jun 2009 – Alogust 2009 • Messatelle 4: Kapadint (Latificarer Hintergrand, niedziges Konzentrationnivesus) Jun 2009 – Alogust 2009 • Messatelle 4: Kapadint (Latificarer Hintergrand, niedziges Konzentrationnivesus) Jun 2009 – Alogust 2009 • Messatelle 4: Kapadint (Latificarer Hintergrand, niedziges Konzentrationnivesus) Jun 2009 – Alogust 2009 • Messatelle 4: Kapadint (Latificarer Hintergrand, niedziges Konzentrationnivesus) Jun 2009 – Alogust 2009 • Messatelle 4: Kapadint (Latificarer Hintergrand, niedziges Konzentrationnivesus) Jun 2009 – Alogust 2009 • Messatelle 4: Kapadint (Latificarer Hintergrand, niedziges Konzentrationnivesus) Jun 2009 – Alogust 2009 • Messatelle 4: Kapadint (Latificarer Hintergrand, niedziges Konzentrationnivesus) Jun 2009 – Alogust 2009 • Messatelle 4: Kapadint (Latificarer Hintergrand) • Messatelle Viscostificare (Latificarer Hintergrand) • Messatelle Viscostificarer (Latificarer Hintergrand) •	Die Äquivalenz des GRIMM Modell 180 konnte sowohl für PM_{sp} als auch für $PM_{2,6}$ nachgewiesen werden.	
	Dio Massupoan usurian an foloandan vias Messatellan dumhoefiihd	
Description 2007 - Marz 2008 Messettile 2: Berrygg (bound wertake Messettile 2: Messettile (bound wertake Messettile 2: Messettile (bound wertake Messettile 2: Messettile (bound wertake Messettile 2: Messettile (bound wertake Messettile 4: Messettile (bound wertake Sowed) für PMs, als auch für PMs, als die Anwandung einer Kallbrüchrächten erfausterlich. Für PMs, als auch für PMs, als auch für PMs, als die Anwandung einer Kallbrüchrächten erfausterlich. Für PMs, als auch für PMs, als auch für PMs, als die Anwandung einer Kallbrüchrächten erfausterlich für Bung g 6/6. Für PMs, als auch für PMs, als auch für PMs, als die Anwandung einer Kallbrüchrächten für auch einige 6/6. Für PMs, als hendhrächter Messentilschriftelt wurde an der Messetelle Wessetellet besbech- ter auf beinge g 6/6.	 Messstelle 1: Graz Süd (städtischer Hintergrund, hohes Konzentrationsniveau) 	
Unit 2006 - August 2008 • Messatelia S: Weessidelia Hollbaham (intractici) Desember 2000 - Marz 2000 - August 2009 • Messatelia V: Regularit Latification ritinitegrand, riedrigue Konzentrationshivesui J.a.t. 2000 - August 2009 Scendin EP Mar, et Bi de Kaltherhunktion • Für Mar-beiligt de Kaltherhunktion • Gaussenze * Ga	 Messstelle 2: Steyregg (locker verbautes Wohngebiet mit Industrieeinfluss) 	
 Interacting December 2009 - Mider 2009 - Mid	Juni 2008 – August 2008	
Messatili 4: Naganita (didicior rinifurgand, riedigas Konzartandonnessa) Jan 2007 - August 2009 Soveh für PM ₁₀ als auch für PM ₁₂ lit dis Anwendung einer Kaltheinfunktion erforsterlich. Für PM ₁₀ betig die Kaltheinfunktion Coursens = Coursen = (Cours - 0.37) / 1.155 De maximalis kombineten Messanitischerlich wurde an der Messatelle Wesseliefeld besbeach- ter auf betragt g. 26. Für PM ₂₀ betragt die Kaltheinfunktion De coursens = Coursens = (Cours - 0.37) / 1.056 De maximalis kombineten Messanitischerlich wurde an der Messatelle Wesseliefeld besbeach- ter auf betragt g. 26. Ter PM ₂₀ betragt die Kaltheinfunktion De coursens = Coursens = (Cours - 0.37) / 1.086 De maximalis kombineten Messanitischerlich wurde an der Messatelle Wesseliefeld besbeach- ter auf betragt 12.2%	 Messsiele 3: Wessisteld der Hokabruhn (tandich) Dezember 2008 – März 2009 	
Sovehi für PM ₂₀ als such für PM ₂₀ jet die Anwendung einer Kaltkriertunktion erfordantet. Für PM ₂₀ beträgt die Kalthriertunktion Ensamme Ensamme Ensamme Für PM ₂₀ beträgt die Kalthriertunktion Ensamme Ensam	 Messstelle 4: Klegenfurt (städtischer Hintergrund, niedriges Konzentrationsniveau) Juni 2009 – August 2009 	
Für PMrs behögt die Kaltbrierfunktion © Equations = (Coper 0.377) / 1.155 Die maximalie benchhörten Messunalchenheit wurde an der Messetelles Wiesetelleß beschach- tet und betrug 9.0%. Für PMrs beträgt die Kaltbrierterfunktion © Equations = Coperations = (Coper - 3.3) / 1.085 Die maximalie kombinierte Messunalchenheit wurde an der Messetelle Wiesetelfeld besbach- tet und betrug 12.2%.	Sowohl für PM ₁₀ als auch für PM2, ist die Anwendung einer Kalibrierfunktion erforderlich.	
Construct Construct Construct Construct Construct Die manimale auchöristen Massandelse Wissenbleidel beschachte Für PMag, befägt die Kalbrinnerfunktion Construct Construct Construct Für PMag, befägt die Kalbrinnerfunktion Construct Construct Construct Construct Ober maximalie kombinitien Construct Construct Construct Construct Construct Die maximalie kombinitien Messandelse wurde an der Massandelse Wesetafeld beschechter Messandelse Wesetafeld beschechter	Für PM., helränt die Kellhrierfunktion	
Die maannais konzibierden Kessansilischerheit wurde an der Messelelle Wesseleide Wesseleide beschach- ter und beinge 96%. Für PMa ₂₀ bestegt die Kalikonfunktion Die maannais Die maannais Die maannais kenzibieren Kessansilischerheit wurde an der Messeleite Wesseleidel beschach- ter und being 122%.	C Equivalence = Cicentor = (Cicen - 0.37) / 1,155	
Für PM ₄₂ beträgt die Kalbriertunktion D Espainnes = Gean $e_{2} = 3.3$ / 1.085 Die maximale konstriktente Massundicherheit wurde an der Messakelie Wieseklefäld besbach- tet und betring 12.2%	Die maximale kombinierte Messunsicherheit wurde an der Messstelle Wieselsfeld beobach- tet und betrug 9,6%.	
C Equivance = Ceganore	Für PM _{1 %} beträgt die Kalibrierfunktion	
Die maximalie kombiniterik Messundischerheit wurde an der Messentele Wiesenteleit beschech- ter und betrug 12,2%	c Equivalence = c _{Kan Nor} = (c _{Kan} - 3,3) / 1,085	
le i tare	Die maximale kombinierte Messunsicherheit wurde an der Messatelle Wieselsfeld beobach- tet und betrug 12,2%	
11 Face	\$	
dubruce polici	Maria John	
Mag. Marina Fredition	Mag. Marina Ertiblich	
50. Accountgatesion Lunguanta & Energie Teit: +43-(0)-1310 MABB2		

Applicant: GRIMM	USA	_					
Candidate method: Model 18	30 - PM2 5 I	Class II					
Test site: BAKERSFIELD, CALIFORNIA + (Site location: A.)							
Data sets				-	Number	-	
Valid data cets available					46		
Number of valid data sets red	ured for Cla	as III, locatio	nA:	46	46	N	
Number of valid data sets f	or this test	is;		OK			
Additional data sets needed.	Additional data sets needed				-		
Status and Status and Status	Detroit		Part and a		0.1.0	1.1	
Precision	FRM	Candidate	ERM	Candidate	FRM	Candidate	
Mean:	24,9	24,2	8,8	0,4	3,5%	1,7%	
Maximum	75,5	74,8	2,8	6,3	9,4%	11,3%	
Minimum	5,3	5,1	0,1	0,1	0,6%	0,1%	
Canterbace / Prove reacio	DMC D	alative Dr	acision for	Hole elta:	3.04/	93,120	
	Tastra	elauve Fr	te PH25	Class III:	10.0%	15.0%	
	Precisi	on Test R	esuits for	site:	OK	PASS	
Pagracelon statistics	-	Slope	Intercent	Constation in			
Statistics for this test a	ite:	0.977	-0.089	0 99059	₽ ^ FI	nisned fa	11 200
Limits for	Upper:	1,100	2,000	0,00000			
PM2.5 Class III	Lower:	0.900	-1.873	0.95000	-		
Test Results (Pas	s/Fail):	PASS	PASS	PASS			
		The subjection and	m hine 2.	ddition hine			

им	Where is it in use?						
	Generally the EDM180 is running in several states of Europe and the world in national and local authority networks and shows very good results in equivalency to the gravimetrical reference methods.						
	Some of these countrie	es are:					
	Germany	Bosnia					
	Belgium	Croatia					
	Austria	Switzerland					
	Serbia	Korea					
	Spain	United Arab Emirates					
	Czech Republic	Turkey					
	China	Australia					
	South Africa	Saudi Arabia					
	Greece	Canada					
	Hungary	Netherland					
	Mongolia						

www.GRIMM-aerosol.com